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The generation and evolution of small amplitude long wavelength travelling distur-

bances in rotating disk flow is the subject of this paper. The steady rotational speed of the

disk is perturbed so as to introduce high frequency oscillations in the flow field. Secondly,

we introduce surface imperfections on the disk such as roughness elements. The interac-

tion of these two disturbances will generate the instability waves whose evolution is

governed by parabolic partial differential equations which are solved numerically. It is

found that, for the class of disturbances considered here (wavelength on the order of

Reynolds number), eigensolutions exist which decay or grow algebraically in the radial

direction. However, these solutions grow only for frequencies larger than 4.58 times the

steady rotational speed of the disk. The computed receptivity coefficient shows that there is

an optimum size of roughness for which these modes are excited the most. The width of

these roughness elements in the radial direction is about .1ro where ro is the radial

location of the roughness. It is also found that the receptivity coefficient is larger for a

negative spanwise wavenumber than for a positive one. Typical wave angles found for

these disturbances are about -26*.
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1. INTRODUCT/rON

In this paper, we investigate the receptivity and non-parallel stability problem for

travelling disturbances in a rotating disk flow. A significant feature of the boundary-

layer flow on the rotating disk is that its velocity component in the radial direction, the

crossflow velocity, has an inflectional point. This causes an instability, often called

crossflow instability, first noticed by Smith (1946) and investigated theoretically and

experimentally by Gregory et al. (1955). When the crossflow component is combined in a

particular direction with the velocity component in the azimuthal direction, they form a

mean velocity profile which has an inflection point at which the velocity is zero. This

permits an inviscid neutral disturbance with zero frequency which connects to unstable

modes at other wavenumbers (see Stuart in Gregory, Stuart & Walker (1955)). The

stationary disturbances appear as vortices, called crossflow vortices, which rotate in the

same direction. This phenomena is also observed in other flow geometries such as

rotating cones and swept wings, and it is this latter practical application which generates

the interest in the problem since it is found that the crossflow instability dominates the

boundary-layer transition process near the leading edge of a swept wing.

In the rotating disk flow, the crossflow vortices spiral outward at an angle whose mag-

nitude is approximately 10°-14*, with respect to the azimuthal direction (Fig. 1), and these

vortices first start to appear at a Reynolds number of about 286. Wilkinson and Malik

(1983), using hot-wire techniques, mapped out the complete wave pattern on the disk and

found that the stationary disturbances originate from isolated roughness sites on the disk.

Mack (1985) computed the wave pattern observed in the Wilkinson-Malik experiment

using the linearized stability equations and assuming a white spectrum at the source of the

wave pattern. Malik (1986) calculated the neutral curve for stationary disturbances, and

found numerically another stationary viscous mode which corresponded to zero wall-

shear stress of the mean velocity profiles. At high Reynolds numbers on the lower branch

of the neutral curve, the wavenumber a behaves like a = const/R112 , and at the upper

inviscid branch they behave like a - const. Here a is the nondimensional wavenumber in

the radial direction, which is nondimensionalized by the length scale (V/Io)1/ 2, and R is

the Reynolds number, defined by R = *(S2o / v)112 , where v is the kinematic viscosity, Doiis

the angular velocity of the disk, and r,* is the radius where the local stability analysis was

done. C

Hall (1986) developed an asymptotic analysis to investigate the two branches of the 0

neutral curve. He showed that the inviscid mode is characterized by a two-layer structure.

The upper deck is governed by the Rayleigh equation, and a thin layer near the wall is

needed to satisfy the no-slip boundary condition at the wall. The lower branch neutral ty codes
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curve is characterized by a triple-layer structure and has a long wave length. This mode

has its structure fixed by a balance between viscous and Coriolis forces. At high Reynolds

numbers, the lower branch neutral waves are inclined at about 390 to the radial direction.

It is also observed that the formal asymptotic theory results, and the linear stability

calculations based on parallel-flow assumption, agree for a large range of finite Reynolds

number.

In a recent paper by Balakumar & Malik (1990) (referred to as BM below), linear

stability characteristics of stationary and travelling disturbances in a rotating disk flow

were presented. Figure (2) shows the neutral stability curves in the radial wavenumber a

vs Reynolds number R plane for different nondimensional frequencies. Here the nondi-

mensional frequency o) is defined as the ratio of the dimensional frequency of the distur-

bance d to the rotational speed of the disk Qo. For a detailed discussion of this, the reader

is referred to BM. In this paper, we are concerned with the lower branch neutral curve at

high frequencies. It is seen from Fig. (2) that at high frequencies, ( = 6.0 and 7.9, the

wavenumber a varies like R -1. The waves for these modes are inclined at negative

angles, see Fig. (1). For o = 7.9, this angle is about -35.320.

The stability results in BM have been obtained from linear stability theory with paral-

lel flow assumptions being used. In the rotating disk case, this assumption amounts to

locally replacing the variable radius r* by the constant radius r,. This approach is justi-

fied if the wavelength is much smaller than the radius r. This requirement is violated

when the wavenumber is of the order of R- 1, and the validity of the Orr-Sommerfeld type

approach becomes questionable. This is similar to the situation which exists in the GMrtler

problem, Hall (1982,1983). It was shown by Hall that, at 0(1) wavenumbers, the Gbrtler

instability is governed by a parabolic type partial differential system. In this paper we

investigate this R-1 BM mode of instability at high frequencies and allow for nonparallel

effects in a self-consistent manner.

We formulate the problem as a receptivity problem similar to that analyzed for the

Grtler case by Denier, Hall, & Seddougui (1990). We perturb the steady rotational speed of

the disk so as to introduce high-frequency oscillations in the flow field. Secondly, we

.... introduce imperfections on the surface as roughness elements. The interaction of these two
... flow effects, the unsteady one due to the oscillations of the disk and that introduced by the

roughness, will generate the instability waves whose evolution is governed by parabolic

partial differential equations. These partial differential equations are solved numeri-

cally. In Section 2 we describe the formulation of the receptivity problem for the rotating

disk flow, the results are discussed in Section 3, and the conclusions are presented in

Section 4.
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2. FOEMULI F THE PROBLEM

Consider an infinite disk rotating about its axis with angular velocity Do (Fig. (1)).

We take cylindrical coordinates r°, 0, z* with z° = 0 being the plane of the disk and assume

that the fluid occupies the half space z° > 0. Let p, U, U, W denote the steady-state values of

pressure and velocity in the r, 0, z° directions, respectively, in the rotating coordinate

frame. Von Karman's exact solution of the Navier-Stokes equations for steady laminar

rotating-disk flow takes the form

U = r*2F(z) , U= r*oG(z) , W = (Vo)112 H(z) , =pvfl o(z) (2.1)

where z = z°(S 0 / V)112 . The Navier-Stokes equations reduce to the following equations for

F, G, H and P:

F2 -(G+ 1)2 +F'H-F"= 0 (2.2)

2F(G+ 1) + G'H -G" = 0 (2.3)

x'+ HH'- H" = 0 (2.4)

2F + H' = 0 (2.5)

where the prime denotes differentiation with respect to z. The boundary conditions are:

F=, G=0, H=0 (z=0) (2.6)

F=0 G=-4 (z - o) (2.7)

In the following analysis the variables are nondimensionalized by:

velocity - r

length - V

pressure - pr. o

time - 4V 2

The Reynolds number is defined by

(\ 1 /2

R = II , (2.8)
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where r,~ is a typical radial length scale.

Let us write the instantaneous~ nondimensional velocities u, v, w and pressure p as

u(r,O,z,t)=LF(z)+U(r,6,z,t) ,(2.9)
R

v(r,9,z,t)=-LG(z)+V(r,G,z,t) ,(2.10)

R

1
w(r,O,z,t)=-H(z)+W(r,8,z,t) ,(2.11)

where U, V, W are nondimensional perturbations from the steady mean flow. We substi-

tute these expressions into the Navier-Stokes equations in the rotating frame and obtain the

following nonlinear perturbation equations for U, V, W, and P.

dU r dU GdU HdU F r 2 v 2  dUV dU dU
atR dr W O dz T r dr

dp +1 f2U +1 d2U 1 dU d2U U 2 2dV (213
- dr j:r + T 2  rdrT + r 2 doJ(.3
d~rV~9V~VFr 2 UV dVd I

-V+-rF- +--E+-- +-V + -WG'+ --(G + W)U+-+U-LV+--+W-
dt dr R dG R dzR R R r dr r d &z

1- p 1 aP V I a2 1~ ldV d2V V 2 dU 1(.4

dW d Gdr r dW 1 dr V2 r2  d

__-+ F~ + 'O WH' + U dW- + V W -
dt R d R 5: rd dz

dP 1 [ d2W 1ld2 W 1ldW d2W

4- dU7 + V- w 0. (2.16)
r r rd &

Here r is the nondimensional radius and t is the nondimensional time. We must solve

(2.13) - (2.16) subject to the no-slip condition at the wall, whereas sufficiently far away

from the wall we insist that the disturbances vanish. We are going to investigate the high

frequency lower-branch instability mode for which the wavenumber varies like R-1 at high

Reynolds numbers as discussed in BM.
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We introduce a disturbance into the steady motion first by perturbing the speed of

rotation of the disk to

D = £2o(l+ Ae - ' M' ) , (2.17)

and second by introducing a hump on the surface of the disk (Fig. 1). Here d" is the dimen-

sional frequency of the oscillations which may, for example, simulate an acoustic distur-

bance. The shape of the hump is defined by

I V I

z =_- SfI, , (2.18)

where f is a function of(r"/r') and 0; 8and A are small scalar parameters with 8, A << 1.

In nondimensional form (2.17) and (2.18) become

a= 20(1+A e- ' O)IR) , (2.19)

and

z=bf jL6) (2.20)

where ( is the nondimensional frequency defined by o) = o" /Do. Since we are seeking

solutions which are linear in 6, we can look for Fou,,rier series solutions in the 0 direction.

We expand f(r / R, 0) in Fourier series as

f(.L,O) = j (-L,,)ePO (2.22)

This will permit us to perform the analysis in the Fourier space /3. We will assume that

Reynolds number R is large and seek solutions which are linear in 8 and A. The perturba-

tions U, V, W and P are written as

U=A AL!P(z)e-w/Rt +.LFL'zis

R R (R )e
+ A-5 . ' 8 ze-Wm'Rt ei/3#

+ higher order terms (2.23)

V =d L dG(z)e iIRt +8-G I-,zlei
R R (R )+A 6 "' _e--illt r ri

+ higher order terms (2.24)
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W = 4 H(z)e-'l~Rt + krj,ze~

+ higher order terms ,(2.25)

RR
R kR)(2.26)

We identify (P,G6, I, P) as the flowfield induced by the oscillations of the disk, 07,U, H,PF)

as the flowfield induced by the hump, and (a,b,tb,j) as the fiowfield produced by the

interaction between the first two flow fields. Let us assume that the factor F = r / R is 0(0).

Substituting the above expressions (2.23) - (2.26) into the equations (2.13) - (2.16) and

collecting terms of the same order we obtain a sequence of equations for the induced fields.

At order A, we obtain

(-io + 2F)P~ +~ HPr - 2(G + 1)0;+ FPA - P-=0 (2.27)

(-ic? + 2F)er + Hj' + 2(G + 0) + Gfl - 6" 0 (2.28)

(-iw + H')fl + Hl' + P - fH- = 0 (2.29)

2F + Hl'= 0. (2.30)

The boundary conditions at the solid boundary are

P(O) = l(0) =O0 (2.31)

6(0) = 1 . (2.32)

Far away from the surface of the disk the disturbance should decay exponentially. This

gives

P,-Ap~o(2.33)

6' - p 6 = 0 (2.34)

where

H(-a) - H2  
-4iwo (2.35)
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and the real part of p is less than zero. For order 3 we obtain the following equations for
F,G, H and P:

(2F+i G)F+FF- -+ Hd--2(+ !)-F 2

G +1)G + F'H-- " , (2.36)-F2
(2F + iG)G + F + H -- +2(G + I)F+G'H - (2.37)

H+ +H'-- +- ,(2.38)

FF + ipGjT + H + H'H =- + -
Oz- , (2.38)

_ .. d .^ -

2F+ r-+ipG+-=O . (2.39)
ddz

The appropriate boundary conditions are

F(0) = -F'(0)(F,) (2.40)

'(0) = -G'(0)f(F,P) (2.41)

H(0) = 0 (2.42)

The solution of Eq. (2.36-2.42) is:

F(z) = -F'(z)f(F,P) , (2.43)

0(z) = -G'(z)f(F,P) (2.44)

H(z) = {2f(F,) + F}F(z)+ifiG(z)f(r,3) , (2.45)

and P(z) can be obtained from Eq. (2.38). At order A3, we obtain the equations for the
induced disturbances gz,ib andh:

o+ ( iPG F)_ a-Fd"- H ,i-fF'+ 2(G+_1)0=

FFF + pfr + MIHd + f d (2.46)

d"O ~ ~ -( 
.oiiG P b F -H d6 - F &- 2(0+ 1IN! = F( u+ F )+ FP U+ Fd
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+FFG+i0F+FH-+FH-(.7

dzz

4+FO~ifb+Fdb=O(2.49)

dF tdz

The appropriate boundary conditions are

1()= -F'(O)ipf() ,(2.50)

b(0) = -G(W(j),(2.51)

lb(O = 0(2.52)

It is easy to verify that if we write

2= -F'(z)Ff (FJJ) + u1  (2.53)

S= -G'(z)F(F,f3) + v1  (2.54)

Lb=f2f+~Fd?}(z)+i3Gf+w1  (2.55)

then Eq. (2.46), (2.47) and (2.49) take the form

-2  - -ia+ i13 + F)ul + FF .+ H '"'+ FF'Wj - 2(G0+ 1)v, (2.56)
dz 2 r- d

ul= -(-ico+iJ3G+F)ui + FF.!+ H±!.I+ 'w1 +2(0+ 1)uI (2.57)

____ d +pv~ (2.58)

with the boundary conditions

ul(F,)=O ,(2.59)

VI~f,)=O ,(2.60)

w 1 (i0) =-i~(F~f) .(2.61)

The boundary conditions at the far field are

U, -iU,= 0(2.69)



v -v1, = 0 (2.63)

where

H(oo)- IH() 2 - i(o +,0)
22 (2.64)2

and the real part of fi is less than zero. Equation (2.48) can be integrated to solve for

pressure J. We observe that the above system of equations is of the parabolic type. The

inhomogenity appears as the normal boundary condition wl(F,0)=-ifi(F,fi). Therefore, if

we specify w, P3 and f(F,3) we can integrate these equations marching in F. The equations

were solved using the two-point fourth-order compact scheme in the z direction and second-

order upwind scheme in F direction (Spall & Malik (1989)).

We note that the system (2.56-2.58) permits eigensolutions of the form

Iv, = =ry vo(z) ~ (2.65)

I rOW

where yis a complex number and (u0,vo,w o) satisfy,

d 2uo = (-io + ifiG + fluo + 7'Fuo + H dz + woF'- 2(G + 1)vo  (2.66)

d 2  v d0

d 2 VO=(-io)+iG+F)vo+ )Fvo+H -+woG'+2(G+ 1)uo  (2.67)
dz2

dw Uo + )% + i0 VO = 0, (2.68)

with the boundary conditions uo(0)= v(O) = w0 (O) = 0 and u, v and w decay at infinity.

Therefore, y is the eigenvalue of the system and determines whether the disturbance grows

or decays algebraically in the radial direction. If in the parallel flow linearized stability

equations (2.16-2.19) of BM, we replace a = a. / R, 1 = Po / R, 6 = o / R and neglect all the

1/R2 terms, we obtain the same equations as above (2.66-2.68) with ia replaced by y.

Therefore, the solutions obtained for the high frequency (11R) mode in the earlier paper are

to be interpreted as algebraic and not as exponentially growing/decaying solutions. In

fact, the linearized Navier-Stokes equations in a rotating coordinate system (equations

(2.11-2.14) in BM) have solutions of the form

9



,=ry .. = (z) ,,(Z)}

+O-** 21i+

~~r2: r T + --Ij~ + ...+ r =-- - + ..

This solution exists for all the frequencies (o and all azimuthal wavenumbers 1t. However,

we will see in the next section that the real part of yis positive only for frequencies o > 4.58

and for a certain range of fP values, and thus the algebraic instability is not present for

lower frequencies.

3. RESULTS
First we will present the values of y obtained from the eigenvalue system (2.66-2.68).

The results are depicted in Table 1.

Table 1

+4.0 +0.0 (-.50388,15.318)
-1.0 (-.48892,13.176)
-2.0 (-.49032,10.829)
-3.0 (-.54533,8.089)

+4.6 -2.0 (-.03848,13.484)
-1.0 (-.00918,15.783)
0.0 (.00422,17.916)
1.0 (.00921,19.936)
2.0 (.00753,21.874)
3.0 (.00186,23.748)
4.0 (-.00675,25.570)

+7.9 -8.0 (-1.3621,9.593)
-7.0 (1.1622,14.652)
-6.0 (1.6793,18.261)
-5.0 (1.9842,21.249)
-4.0 (2.2082,23.919)
-2.0 (2.5397,28.716)
0.0 (2.7884,33.074)
2.0 (2.9893,37.156)
4.0 (3.1582,41.045)
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We observe that the real part of y is positive for frequencies larger than 4.58, however, this

occurs only for a certain range of P values. For o) = 4.6, real () is positive in the range of P
= 0.0 to 3.0 and for w = 7.9, this range is from -7.0 to 40. These results are in agreement with

the BM results reproduced in Figure 2 which shows that 1/R mode instability is present only

for frequencies higher than 4.58. The unstable modes computed by BM for frequencies

lower than 4.58 do not belong to this class of instability.

Now we present the results for the receptivity coefficient associated with the 1R mode

discussed above. First we consider the case where l(FA,) takes the form

e- e

with

X 4a-(F -FO)

Here F is the location of the hump and will be taken as o = 1, which is equivalent to defin-

ing the r,' based on the radial location of the hump. The parameter a determines the spread

of the hump in the radial direction.

Figures 3, 4 and 5 show the downstream development of the amplitude of ul, v, and w,

(Eqs. (2.56-2.58)) for the case o) = 7.9, P = -7 and a = 40.0. In these figures, the vertical axis

shows the normal coordinate z and the different curves are plotted at different F = .6, .7, .8,

.9, 1.0, 1.1, 1.25, 1.3, 1.4, 1.6 and 1.9. We notice that the initial form of the radial distur-

bance velocity component u1 shows two maxima, and the lower maximum disappears

while the amplitude of the upper maximum increases continuously with F. The

distribution of the amplitude of the normal velocity component w, shows that at the edge of

the boundary layer it approaches a constant value which increases with increasing F.

In Figs. 6, 7, 8, and 9 we plot the maximum amplitude of the velocity components ul, vj,

and w, against the coordinate x for various values of a with P = -7 and (0 = 7.9. For ul we

take the maximum amplitude at the outer maximum point and for w, we take the maxi-

mum amplitude as the amplitude at the edge of the boundary layer. We observe two differ-

ent types of curves for a fixed a. For an x less than about .5, the amplitude pattern appears to

be Gaussian shaped, and beyond that, the amplitude increases with increasing x. We

identify that the first part is due to the direct influence of the wall and the second growing

part is due to the instability. Figure 9 is the same as Fig. 7 and the curve A= C1(fl,a, ()F is

plotted for a= 10, 20, 100, and 200. Here y is the eigenvalue obtained from Eq. (2.66-2.68) for

o) = 7.9 and P = -7 and is equal to (1.1622, 14.652). CI(p,aw,) is a measure of the receptivity

coefficient of these modes to the excitation we considered in this paper. From Fig. 9 it is

clear that there exists downstream an algebraic instability of the form ry and there are no
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other eigenfunctions which exist for the system (2.56-2.58). The receptivity coefficient

C(/,a,o)) is given in Table 2 for a) = 7.9 and P3 = -7 for different a values.

Table 2

a7 CI(P = -7, a, o) = 7.9) 1 C,1I

5 (-.00135,.00324) .00352
10 (-.00391,.00983) .01058

20 (-.04381,.01251) .04556

40 (-.11258,.01124) 11314

100 (-.16154,.02733) .16384

200 (-. 14827,.03586) .15254

1000 (-.08145,.02089) .08409

2000 (-.05812,.01693) .06054

The receptivity coefficient increases with a up to a = 100 and then decreases. Therefore, we

conclude that there exists an optimum size for which instabilities are excited the most. In

Fig. 10, we plot the maximum amplitude of vI for w = 7.9, a = 100 for different P3 values. The

figure shows that the waves are excited for the range of P3 values P3 = -7 to P = 20. The

receptivity coefficients are larger for negative P3 values than for positive P3 values.

Next, we will present the cumulative wave pattern produced downstream of the rough-

ness site. We will consider the case o = 7.9 and a = 100 and the roughness element defined

by
f(r, 0) = e-S(6)

where

X=4,(F-L0)

and S(O) defines the shape in the azimuthal direction. We consider the triangular shape

defined by

S(O) =-(6+a) ; -a50!5o
a
1b(b-0) ; 0O<Ob

where a, b are positive numbers which are in the range 0 < a, b a<r. If a equals b we get the

symmetric shape; otherwise, we get the asymmetric case. We will present the results for

the cases a = b = .05. The Fourier transform of S(O) is
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S(O) = (

where

9(fl)= (a+b) ; P=0
2s

1 l_1-e 1-___ A}
98 fi) =.Tt7 I - + /8*0

Figure 11 shows the contour plot in (F, ) plane of the real part of v(F,0,z,t) at the heightz =

1.5 for the case o = 7.9 and a = 100, a = .05 and b = .05. The roughness element is located at

F = 1 and is denoted by the point x. Near the roughness we see the effect of the roughness,

and downstream of the roughness we observe the instability waves emerging from the

wake. Contours of zero amplitude are highlighted by thick lines. These waves are

inclined at angles of about -260. The wavelength in the radial direction is about 1.0 and the

number of waves in the azimuthal direction /3 is about 6.

In Fig. 12 we plot the maximum amplitude of 1V11 for o) = 4.6 for different /3 and a

values. We see that there is only weak instability for this frequency for certain values of P3.

Figures 13 and 14 show the results for frequencies o = 4.0 and 0.0. For these frequencies,

all the disturbances decay downstream. All these conclusions agree with our previous

calculations for rand the results of BM that the /R instability is present only for o > 4.58.

4. CONCLUDING REMARKS

The receptivity and non-parallel stability of travelling disturbances of long

wavelength (on the order of Reynolds number R) are investigated. The non-parallel

effects are included in a self-consistent manner. It is shown that eigensolutions exist

which grow or decay algebraically in the radial direction. It is established that the

solutions obtained for the high frequency (1/R) mode in the earlier paper of BM are to be

interpreted as algebraic and not as exponentially growing/decaying solutions. These

algebraic-type solutions exist for all frequencies o and all spanwise wavenumbers P.

However, growing disturbances exist only for frequencies larger than 4.58 times the disk

rotational frequency and for a certain range of P values which is in agreement with the

results of BM.

The receptivity calculations show that there exists an optimum size of roughness for

which instabilities are excited the most. For example, the receptivity coefficient C, for

frequency o = 7.9 with spanwise wavenumber P = -7 is .01,.16 and .084 when a = 10, 100 and

1000, respectively. Gaussian shaped roughness elements with a = 100 correspond to a
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roughness element with a spread of about .1ro in the radial direction, where ro is the

location of the roughness. This shows that very narrow or broad roughness elements will

not excite these modes efficiently. It is also observed that the receptivity coefficients are

larger for negative P values than for positive P values. Hence, if these modes are excited

they will align along negative angles.

The cumulative wave pattern produced from an isolated roughness element shows that

the waves are inclined at about -26' and the wavelength in the radial direction is about 1.0.

In dimensional variables, the wavelength 1.0 equals to r* where the ro is the location of the

element. In some experiments performed by Faller and Kaylor (1966), in Ekman layer

and rotating disk boundary layer, the waves oriented at negative angles have been

observed at finite Reynolds numbers. These waves were rapidly moving and had long

wavelengths compared to cross-flow vortices. Even though there seems to be some

similarities between these computed algebraic modes and the experimental observations,

more measurements have to be done to draw any definite conclusions.

Another remaining question is how the lower branch exponential-type solutions join

with this algebraic mode. For example, consider the neutral stability curve for frequency

w = 6.0 shown in Fig. 2. The lower branch neutral curve, which is asymptote to the neutral

curve for stationary disturbances, is an exponential-type solution. We see that this curve

turns around at a Reynolds number of 3x10 6 and becomes a 1!R mode. However, we

discussed that this 1R mode is actually an algebraic-type mode. Therefore, why does the

lower branch neutral curve, which is asymptote to the neutral curve for stationary

disturbances, turn around, and what is its subsequent behavior, are the remaining

questions.
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